Serveur d'exploration sur les variants du Covid

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Time-continuous and time-discrete SIR models revisited: theory and applications.

Identifieur interne : 000084 ( Main/Exploration ); précédent : 000083; suivant : 000085

Time-continuous and time-discrete SIR models revisited: theory and applications.

Auteurs : Benjamin Wacker [Allemagne] ; Jan Schlüter [Allemagne]

Source :

RBID : pubmed:33042201

Abstract

Since Kermack and McKendrick have introduced their famous epidemiological SIR model in 1927, mathematical epidemiology has grown as an interdisciplinary research discipline including knowledge from biology, computer science, or mathematics. Due to current threatening epidemics such as COVID-19, this interest is continuously rising. As our main goal, we establish an implicit time-discrete SIR (susceptible people-infectious people-recovered people) model. For this purpose, we first introduce its continuous variant with time-varying transmission and recovery rates and, as our first contribution, discuss thoroughly its properties. With respect to these results, we develop different possible time-discrete SIR models, we derive our implicit time-discrete SIR model in contrast to many other works which mainly investigate explicit time-discrete schemes and, as our main contribution, show unique solvability and further desirable properties compared to its continuous version. We thoroughly show that many of the desired properties of the time-continuous case are still valid in the time-discrete implicit case. Especially, we prove an upper error bound for our time-discrete implicit numerical scheme. Finally, we apply our proposed time-discrete SIR model to currently available data regarding the spread of COVID-19 in Germany and Iran.

DOI: 10.1186/s13662-020-02995-1
PubMed: 33042201
PubMed Central: PMC7538854


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Time-continuous and time-discrete SIR models revisited: theory and applications.</title>
<author>
<name sortKey="Wacker, Benjamin" sort="Wacker, Benjamin" uniqKey="Wacker B" first="Benjamin" last="Wacker">Benjamin Wacker</name>
<affiliation wicri:level="3">
<nlm:affiliation>Next Generation Mobility Group, Department of Dynamics of Complex Fluids, Max-Planck-Institute for Dynamics and Self-Organization, Am Fassberg 17, D-37077 Göttingen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Next Generation Mobility Group, Department of Dynamics of Complex Fluids, Max-Planck-Institute for Dynamics and Self-Organization, Am Fassberg 17, D-37077 Göttingen</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Göttingen</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Schluter, Jan" sort="Schluter, Jan" uniqKey="Schluter J" first="Jan" last="Schlüter">Jan Schlüter</name>
<affiliation wicri:level="3">
<nlm:affiliation>Next Generation Mobility Group, Department of Dynamics of Complex Fluids, Max-Planck-Institute for Dynamics and Self-Organization, Am Fassberg 17, D-37077 Göttingen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Next Generation Mobility Group, Department of Dynamics of Complex Fluids, Max-Planck-Institute for Dynamics and Self-Organization, Am Fassberg 17, D-37077 Göttingen</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Göttingen</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Institute for Dynamics of Complex Fluids, Faculty of Physics, Georg-August-University of Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute for Dynamics of Complex Fluids, Faculty of Physics, Georg-August-University of Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Göttingen</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:33042201</idno>
<idno type="pmid">33042201</idno>
<idno type="doi">10.1186/s13662-020-02995-1</idno>
<idno type="pmc">PMC7538854</idno>
<idno type="wicri:Area/Main/Corpus">000146</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000146</idno>
<idno type="wicri:Area/Main/Curation">000146</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000146</idno>
<idno type="wicri:Area/Main/Exploration">000146</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Time-continuous and time-discrete SIR models revisited: theory and applications.</title>
<author>
<name sortKey="Wacker, Benjamin" sort="Wacker, Benjamin" uniqKey="Wacker B" first="Benjamin" last="Wacker">Benjamin Wacker</name>
<affiliation wicri:level="3">
<nlm:affiliation>Next Generation Mobility Group, Department of Dynamics of Complex Fluids, Max-Planck-Institute for Dynamics and Self-Organization, Am Fassberg 17, D-37077 Göttingen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Next Generation Mobility Group, Department of Dynamics of Complex Fluids, Max-Planck-Institute for Dynamics and Self-Organization, Am Fassberg 17, D-37077 Göttingen</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Göttingen</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Schluter, Jan" sort="Schluter, Jan" uniqKey="Schluter J" first="Jan" last="Schlüter">Jan Schlüter</name>
<affiliation wicri:level="3">
<nlm:affiliation>Next Generation Mobility Group, Department of Dynamics of Complex Fluids, Max-Planck-Institute for Dynamics and Self-Organization, Am Fassberg 17, D-37077 Göttingen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Next Generation Mobility Group, Department of Dynamics of Complex Fluids, Max-Planck-Institute for Dynamics and Self-Organization, Am Fassberg 17, D-37077 Göttingen</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Göttingen</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>Institute for Dynamics of Complex Fluids, Faculty of Physics, Georg-August-University of Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute for Dynamics of Complex Fluids, Faculty of Physics, Georg-August-University of Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen</wicri:regionArea>
<placeName>
<region type="land" nuts="2">Basse-Saxe</region>
<settlement type="city">Göttingen</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Advances in difference equations</title>
<idno type="ISSN">1687-1839</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Since Kermack and McKendrick have introduced their famous epidemiological SIR model in 1927, mathematical epidemiology has grown as an interdisciplinary research discipline including knowledge from biology, computer science, or mathematics. Due to current threatening epidemics such as COVID-19, this interest is continuously rising. As our main goal, we establish an implicit time-discrete SIR (susceptible people-infectious people-recovered people) model. For this purpose, we first introduce its continuous variant with time-varying transmission and recovery rates and, as our first contribution, discuss thoroughly its properties. With respect to these results, we develop different possible time-discrete SIR models, we derive our implicit time-discrete SIR model in contrast to many other works which mainly investigate explicit time-discrete schemes and, as our main contribution, show unique solvability and further desirable properties compared to its continuous version. We thoroughly show that many of the desired properties of the time-continuous case are still valid in the time-discrete implicit case. Especially, we prove an upper error bound for our time-discrete implicit numerical scheme. Finally, we apply our proposed time-discrete SIR model to currently available data regarding the spread of COVID-19 in Germany and Iran.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">33042201</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">1687-1839</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>2020</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2020</Year>
</PubDate>
</JournalIssue>
<Title>Advances in difference equations</Title>
<ISOAbbreviation>Adv Differ Equ</ISOAbbreviation>
</Journal>
<ArticleTitle>Time-continuous and time-discrete SIR models revisited: theory and applications.</ArticleTitle>
<Pagination>
<MedlinePgn>556</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s13662-020-02995-1</ELocationID>
<Abstract>
<AbstractText>Since Kermack and McKendrick have introduced their famous epidemiological SIR model in 1927, mathematical epidemiology has grown as an interdisciplinary research discipline including knowledge from biology, computer science, or mathematics. Due to current threatening epidemics such as COVID-19, this interest is continuously rising. As our main goal, we establish an implicit time-discrete SIR (susceptible people-infectious people-recovered people) model. For this purpose, we first introduce its continuous variant with time-varying transmission and recovery rates and, as our first contribution, discuss thoroughly its properties. With respect to these results, we develop different possible time-discrete SIR models, we derive our implicit time-discrete SIR model in contrast to many other works which mainly investigate explicit time-discrete schemes and, as our main contribution, show unique solvability and further desirable properties compared to its continuous version. We thoroughly show that many of the desired properties of the time-continuous case are still valid in the time-discrete implicit case. Especially, we prove an upper error bound for our time-discrete implicit numerical scheme. Finally, we apply our proposed time-discrete SIR model to currently available data regarding the spread of COVID-19 in Germany and Iran.</AbstractText>
<CopyrightInformation>© The Author(s) 2020.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wacker</LastName>
<ForeName>Benjamin</ForeName>
<Initials>B</Initials>
<Identifier Source="ORCID">0000-0002-0071-8819</Identifier>
<AffiliationInfo>
<Affiliation>Next Generation Mobility Group, Department of Dynamics of Complex Fluids, Max-Planck-Institute for Dynamics and Self-Organization, Am Fassberg 17, D-37077 Göttingen, Germany.</Affiliation>
<Identifier Source="GRID">grid.419514.c</Identifier>
<Identifier Source="ISNI">0000 0004 0491 5187</Identifier>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schlüter</LastName>
<ForeName>Jan</ForeName>
<Initials>J</Initials>
<Identifier Source="ORCID">0000-0002-3363-8663</Identifier>
<AffiliationInfo>
<Affiliation>Next Generation Mobility Group, Department of Dynamics of Complex Fluids, Max-Planck-Institute for Dynamics and Self-Organization, Am Fassberg 17, D-37077 Göttingen, Germany.</Affiliation>
<Identifier Source="GRID">grid.419514.c</Identifier>
<Identifier Source="ISNI">0000 0004 0491 5187</Identifier>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Institute for Dynamics of Complex Fluids, Faculty of Physics, Georg-August-University of Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany.</Affiliation>
<Identifier Source="GRID">grid.7450.6</Identifier>
<Identifier Source="ISNI">0000 0001 2364 4210</Identifier>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>10</Month>
<Day>07</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Adv Differ Equ</MedlineTA>
<NlmUniqueID>101670234</NlmUniqueID>
<ISSNLinking>1687-1839</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">COVID-19</Keyword>
<Keyword MajorTopicYN="N">Difference equations</Keyword>
<Keyword MajorTopicYN="N">Existence and uniqueness</Keyword>
<Keyword MajorTopicYN="N">Mathematical epidemiology</Keyword>
<Keyword MajorTopicYN="N">Nonlinear ordinary differential equations</Keyword>
<Keyword MajorTopicYN="N">Numerical analysis</Keyword>
<Keyword MajorTopicYN="N">SIR model</Keyword>
<Keyword MajorTopicYN="N">Well-posedness</Keyword>
</KeywordList>
<CoiStatement>Competing interestsThe authors declare that they have no competing interests.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>05</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>09</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>10</Month>
<Day>12</Day>
<Hour>5</Hour>
<Minute>29</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>10</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>10</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">33042201</ArticleId>
<ArticleId IdType="doi">10.1186/s13662-020-02995-1</ArticleId>
<ArticleId IdType="pii">2995</ArticleId>
<ArticleId IdType="pmc">PMC7538854</ArticleId>
</ArticleIdList>
<pmc-dir>pmcsd</pmc-dir>
<ReferenceList>
<Reference>
<Citation>Science. 2020 May 15;368(6492):742-746</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32269067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Respir Med. 2020 Apr;8(4):420-422</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32085846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Appl Stat. 2017 Mar;11(1):202-224</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28979611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2020 Jun;582(7813):557-560</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32340022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2020 Mar 7;395(10226):809-815</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32151335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chaos Solitons Fractals. 2020 Jul;136:109860</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32501371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Infect Dis. 2020 May;20(5):533-534</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32087114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chaos Solitons Fractals. 2020 May;134:109761</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32308258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Differ Equ. 2020;2020(1):384</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32834817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Math Biosci Eng. 2006 Jan;3(1):1-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20361804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2020 Mar;579(7798):270-273</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32015507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Math Biosci. 2015 Feb;260:11-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25445734</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Math Biosci. 2005 Dec;198(2):119-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16135371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Math Biosci. 1994 Nov;124(1):83-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7827425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Math Biol. 2018 Dec;77(6-7):1629-1648</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29330615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Radiology. 2020 Aug;296(2):E119-E120</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32228363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet Oncol. 2020 Apr;21(4):e181</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32142621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bull Math Biol. 1991;53(1-2):33-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2059741</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Med. 2020 Mar 02;9(3):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32131537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Radiology. 2020 Sep;296(3):E186-E188</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32324103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2020 Jul 10;369(6500):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32414780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bull Math Biol. 1991;53(1-2):89-118</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2059743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bull Math Biol. 1991;53(1-2):57-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2059742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Math Biosci Eng. 2020 Mar 16;17(4):2792-2804</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32987496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Nov 27;8(11):e80481</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24312225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Dis Model. 2017 Jun 29;2(3):288-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29928743</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
<region>
<li>Basse-Saxe</li>
</region>
<settlement>
<li>Göttingen</li>
</settlement>
</list>
<tree>
<country name="Allemagne">
<region name="Basse-Saxe">
<name sortKey="Wacker, Benjamin" sort="Wacker, Benjamin" uniqKey="Wacker B" first="Benjamin" last="Wacker">Benjamin Wacker</name>
</region>
<name sortKey="Schluter, Jan" sort="Schluter, Jan" uniqKey="Schluter J" first="Jan" last="Schlüter">Jan Schlüter</name>
<name sortKey="Schluter, Jan" sort="Schluter, Jan" uniqKey="Schluter J" first="Jan" last="Schlüter">Jan Schlüter</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/CovidVariantV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000084 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000084 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    CovidVariantV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:33042201
   |texte=   Time-continuous and time-discrete SIR models revisited: theory and applications.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:33042201" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidVariantV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Tue Jan 26 18:10:18 2021. Site generation: Tue Jan 26 18:10:59 2021